首页> 外文OA文献 >Predictability of music descriptor time series and its application to cover song detection
【2h】

Predictability of music descriptor time series and its application to cover song detection

机译:音乐描述符时间序列的可预测性及其在歌曲检测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intuitively, music has both predictable and unpredictable components. In this work we assess this qualitative statement in a quantitative way using common time series models fitted to state-of-the-art music descriptors. These descriptors cover different musical facets and are extracted from a large collection of real audio recordings comprising a variety of musical genres. Our findings show that music descriptor time series exhibit a certain predictability not only for short time intervals, but also for mid-term and relatively long intervals. This fact is observed independently of the descriptor, musical facet and time series model we consider. Moreover, we show that our findings are not only of theoretical relevance /nbut can also have practical impact. To this end we demonstrate that music predictability at relatively long time intervals can be exploited in a real-world application, namely the automatic identification of cover songs (i.e. different renditions or versions of the same musical piece). Importantly, this prediction strategy yields a parameter-free approach for cover song identification that is substantially faster, allows for reduced computational storage and still maintains highly competitive accuracies when compared to state-of-the-art systems.
机译:直觉上,音乐具有可预测和不可预测的成分。在这项工作中,我们使用适合最先进音乐描述符的常见时间序列模型以定量的方式评估这种定性陈述。这些描述符涵盖了不同的音乐方面,并从包含各种音乐流派的大量真实录音中提取而来。我们的发现表明,音乐描述符时间序列不仅在较短的时间间隔内而且在中期和相对较长的时间间隔内都具有一定的可预测性。独立于我们考虑的描述符,音乐方面和时间序列模型,可以观察到这一事实。而且,我们证明我们的发现不仅具有理论上的相关性,而且可以产生实际的影响。为此,我们证明了可以在实际应用中利用相对较长时间间隔的音乐可预测性,即自动识别翻唱歌曲(即同一音乐作品的不同表现形式或版本)。重要的是,与最新系统相比,这种预测策略可产生无参数的翻唱歌曲识别方法,该方法实质上更快,可减少计算存储量,并仍保持极高的竞争准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号